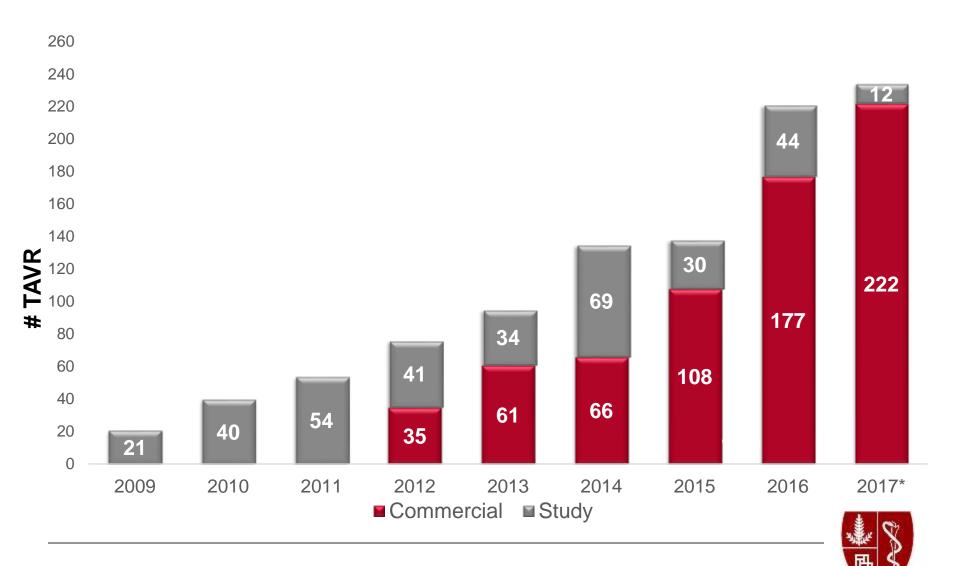
Sizing Strategy and PVL Management: Most Experienced Strategy

Alan C. Yeung, MD
Li Ka Shing Professor of Medicine
Chief, Division of Cardiovascular Medicine
Stanford University School of Medicine

Disclosure Statement of Financial Interest

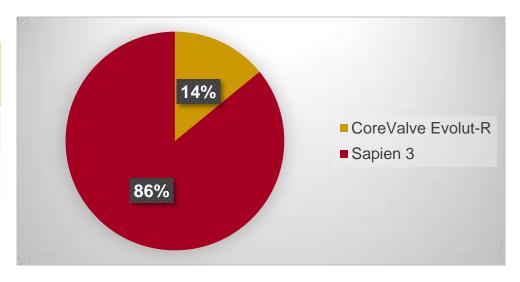
Within the past 12 months, I or my spouse/partner have had a financial interest/arrangement or affiliation with the organization(s) listed below.

Affiliation/Financial Relationship

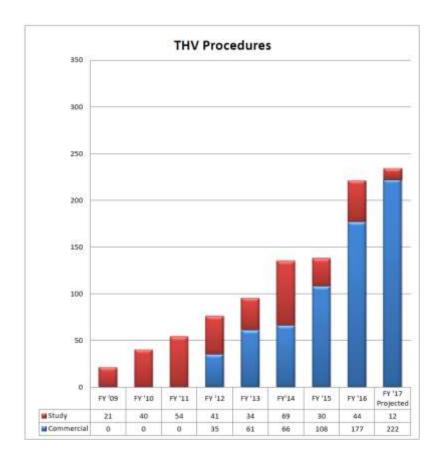

- Grant/Research Support
- Grant/Scientific Advisory Board
- Executive Physician Council

Company

- Edwards Lifesciences
- Medtronic
- Boston Scientific Corp

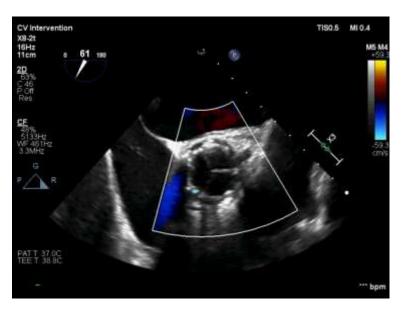

Stanford Experience with TAVR

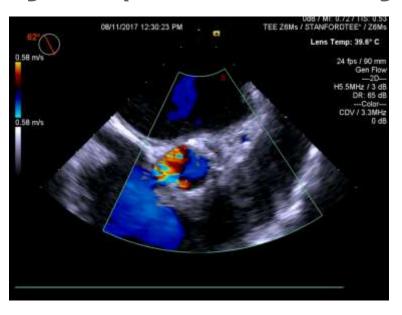
In the past 3 months...

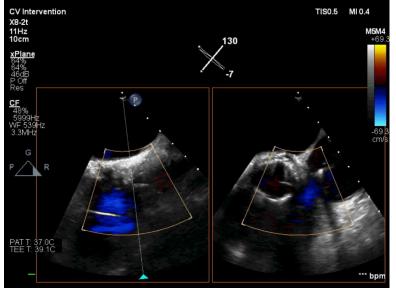

Valve	# of Cases
Sapien 3	61
CoreValve Evolut R	10

Complications	n (71)
PPM/ ICD	7%
Death (TA)	1%
Major Vasc	3%
Stroke	0%

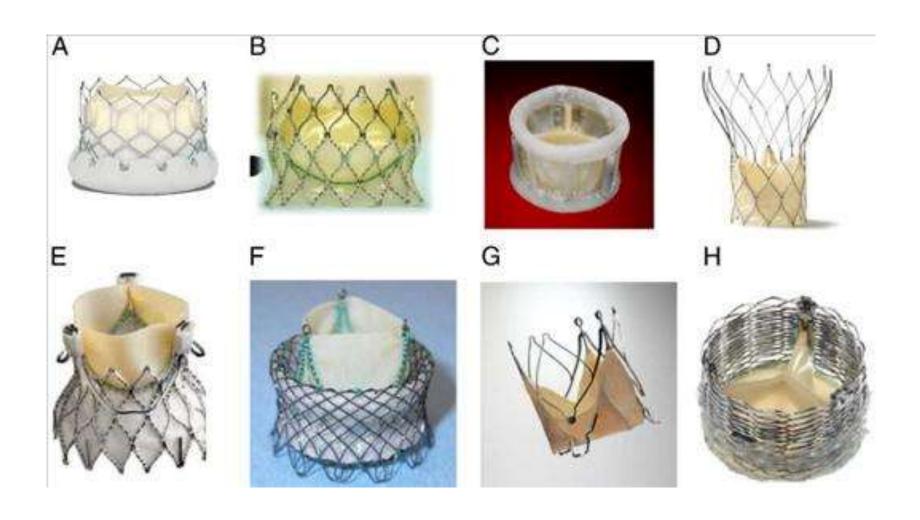
In the past 3 months...


2017 Year to Date:

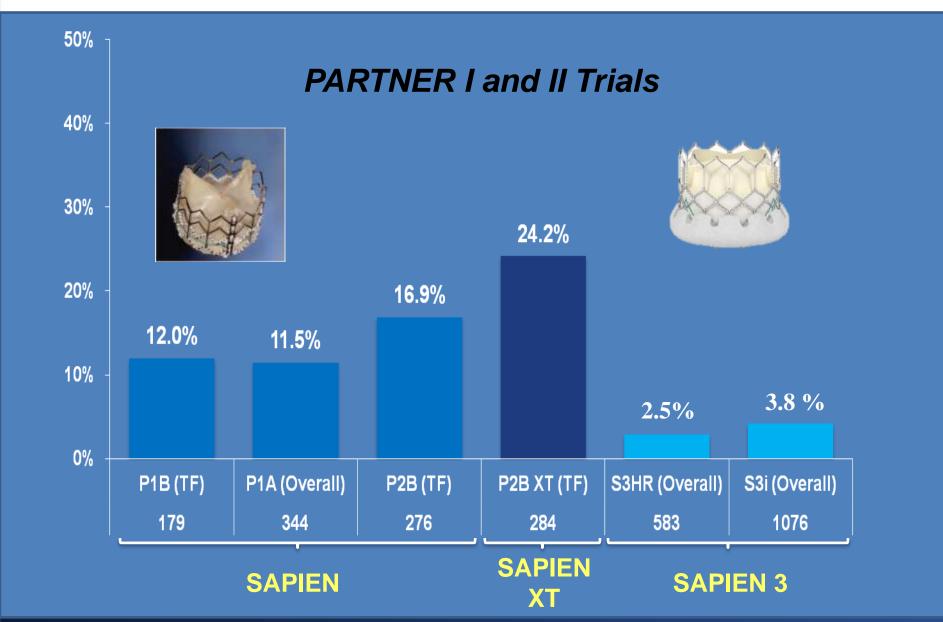

Description	January	February	March	Total
Number of Cases	19	22	19	60
Average PPLOS	3	3	2	2.73
No. ICU Pts	4	3	5	12
Average ICU Pt PPLOS	6	3	2.8	4.8
No. Non-ICU Pts	15	19	14	48
Average Non-ICU Pt PPLOS	2	2	2	2


- 80% Fast Track
- PPLOS down from 3 to 2.73
- No patients has any PVL more than mild at the end of the procedure

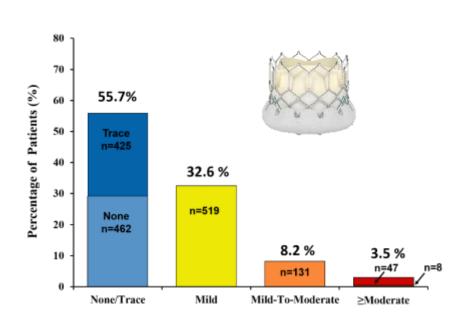
Three iTAVR last Friday.....(4 on Tuesday)



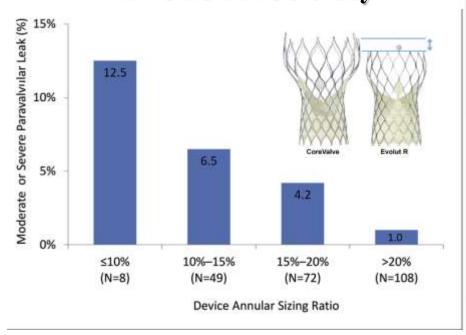
All none or trace PVL (one inflation)!



New Generations of Transcatheter Heart Valves to Prevent PVR


Moderate/Severe PVR at 30 Days

Edwards SAPIEN Valves


Prevalence of Paravalvular Regurgitation with New Generations of THVs

PARTNER 2 – SAPIEN 3 Registry

3.5 % ≥ Moderate PVR 40.8% Mild PVR Pibarot et al. TCT 2016

EVOLUT R US Study

5.7 % ≥ Moderate PVR 32.6 % Mild PVR

Popma, JACC Int 2017; 10: 268-275

Sizing Strategy and PVL Prevention

- Accurate Sizing: CT
- Upsizing or downsizing
- Intraoperative TEE Verification & Monitoring
- No predilation
- One inflation strategy
- Know the imperfect anatomy

Stanford Heart Team

Interventionalists

William Fearon, MDAlan Yeung, MD

- THV Clinic Coordinators
- · Sandy Cardoza, RN
- · Zoe Magee, RN
- Chervl McWard, RN
- · Danna Salvaleon-Cua, LVN

Cardiac Surgeons

- · Michael Fischbein, MD
- · William Hiesinger, MD
- Anson Lee, MD
- D. Craig Miller, MD

Patient-focused
Multidisciplinary Heart
Team

THV Nurse Practitioners

- · Mykl Morrissey, NP
- · Martina Speight, NP

Echocardiologists

- · Rajesh Dash, MD
- David Liang, MD

Radiologist (Cardiovascular)

· Dominic Fleischmann, MD

MRN 0892502-6

Proposed Treatment 8/14/2017 THV MDs: ACY/AL

RN: CM

Referring MD: ACY

History:

86 year old male with history of HTN, HLD, AF, CKD, CAD, prostate CA, and severe symptomatic AS. s/p CABG x 4 (LIMA to LAD, SVG to D1, OM1, rPDA) in 1988. s/p PCI/DES of SVG to OM1 and PPM (Medtronic) implant in June 2016. Currently symptomatic of increased angina

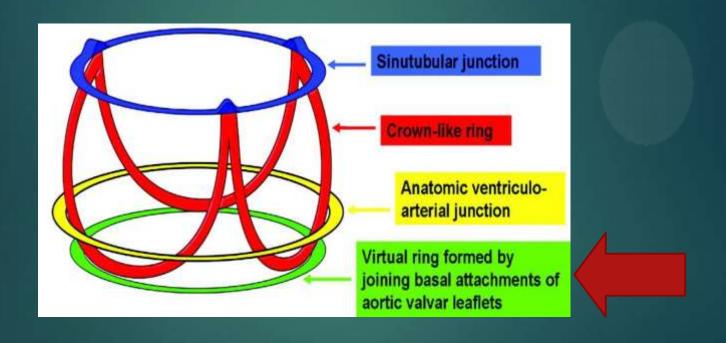
PFTs:	FEV1	1.9 L (104%)	Frailty:	BMI	27.1	STS	7.9%
	DLCO	11.6 mL (56%)	Seru	m Albumin	3.6 g/dL (-)		86 year old, male, Caucasian, 69.6 kg, 161.0 m
	1000100000		100000	ADLs	6/6 (-)		(BSA 1.76), Cr 1.35, HTN, s/p PCI (remote), s/p
Anticoagul	lation Histo	ry/Regimen:	Gr	ip Strength	20 kg (+)		CABG, NYHA Class II, 3v CAD, EF 48%, AS, MS,
				5m WT	4.38 (-)		trace AI, moderate MR, trace TR, first re-op,
ASA and Pl	lavix		03	Score	1/4		elective

Echo:	Date	8/4/2017	RHC:	RA	3	Coronary heights:	LCA	19.5 mm	SOV Diameters:	RCC	35.0 mm
48	AVA	0.67 cm2	94	RV	-		RCA	22 mm		LCC	35.8 mm
	AVAI	0.38 cm2/m2		PA	20					NCC	36.2 mm
	V2 Max	3.9 m/sec		PCW	94	Vascular access:	RCIA	8.8 x 6.9	SOV heights > 15 mm:	Yes	
	Gradient	40 mmHg		co	-	(in mm)	REIA #1	7.0 x 5.1	Ascending Ao diameter:	Long Axis	31.4 mm
	V1/V2	<u>- 22</u>		CI	42.	327	REIA #2	7.2 x 6.7		Short Axis	29.8 mm
	EF	48%	Cors:	LM	90% distal		RCFA	7.5 x 7.3	Annulus:	Diameter	~27.0 mm
	RVSP	30 mmHg	08/03/16	LAD	100% ostial		LCIA	8.4 x 8.1		Long Axis	29.4 mm
	AI	Trace		LCX	100% proximal		LEIA #1	8.0 x 7.9		Short Axis	24.2 mm
	MR	Mild-moderate		RCA	100%		LEIA #2	9.0 x 8.2		Area	584 mm ²
	TR	Trace		Grafts	See Notes		LCFA	8.6 x 8.5		Perimeter	86.6 mm

Notes: Echo: Mild MS with mean gradient of 4 mmHg. Cath: patent LIMA to LAD and SVG to OM1, CTO of SVG to D1 and rPDA.

Summary:	THV Notes:	
86 year old male		• #
• STS 7.9%	• 29 mm Sapien 3	•
High Risk	 Transfemoral approach - Left side 	 Check cors/grafts at time of TAVR
•	Fast track eligible	

Sizing Strategy and PVL Prevention


- Accurate Sizing: CT
- Upsizing or downsizing
- Intraoperative TEE Verification & Monitoring
- No predilation
- One inflation strategy
- Know the imperfect anatomy

Why do we need these aortic measurements?

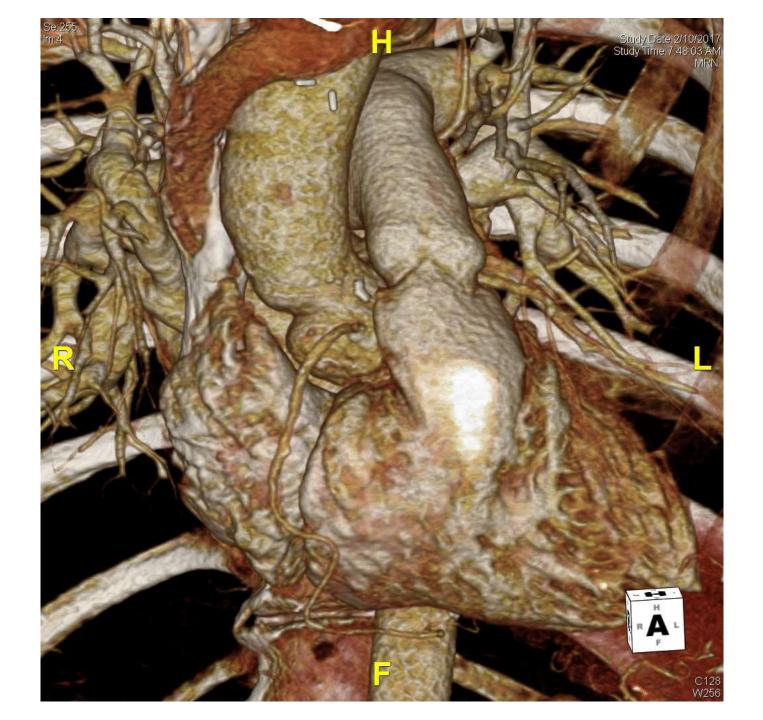
- Predictors of paravalvular leak, BE/SE: undersizing, calcification, implant depth
 - Athappan et al, JACC 2013
- Predictors of root rupture BE: oversizing > 20%, LVOT calcification
 - Barbanti et al, Circ 2013
- Predictors of LM occlusion BE/SE: SOV < 30 mm + LMCA distance < 12 mm</p>
 - Ribeiro et al, JACC 2013

"Virtual" Aortic Annulus – where the trancatheter valve anchors

Piazza N et al. Circ Cardiovasc Interv 2008;1:74-81

\$3

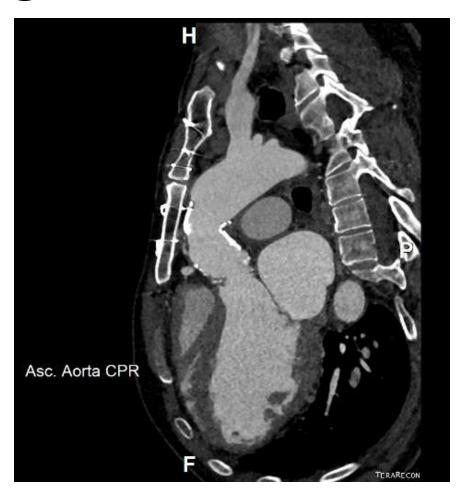
EDWARDS SAPIEN 3 TRANSCATHETER HEART VALVE

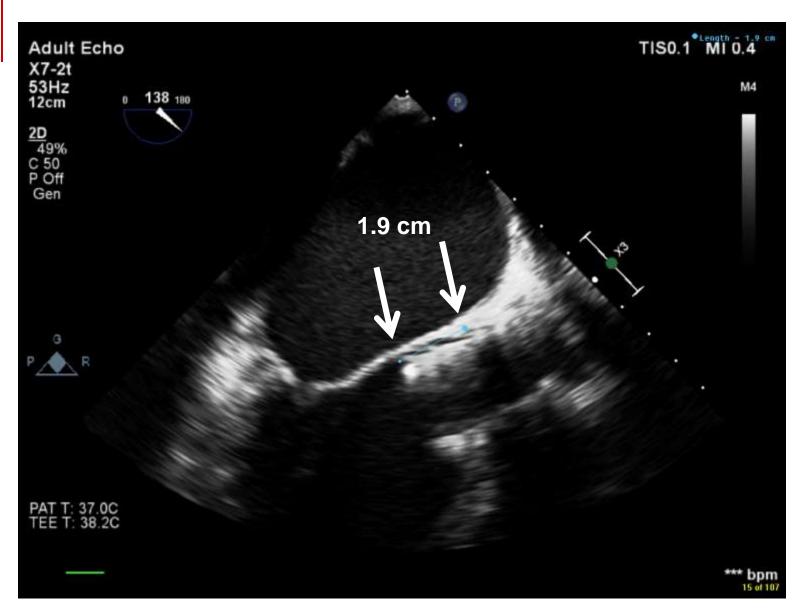

Annulus Sizing		20 mm	23 mm	26 mm	29 mm	
Native Valve Annulus Size (CT)	Area	Area 273 - 345 mm²		430 - 546 mm²	540 - 683 mm²	
	Area Derived Diameter	18.6 - 21 mm	20.7 - 23.4 mm	23.4 - 26.4 mm	26.2 - 29.5 mm	
Native Valve Annulus Size TEE		16 - 19 mm	18 - 22 mm	21 - 25 mm	24 - 28 mm	

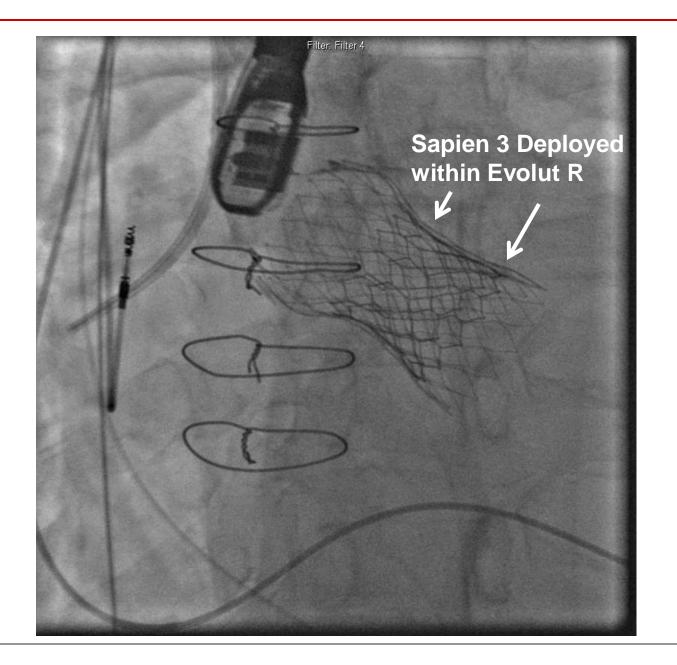
Corevalve/Evolut

Device and Patient Selection Measurements per MSCT

Valve Size	Aortic A	nnulus Measur	ements	Sinus of	Native Leaflet to	Ascending
	Diameter	Perimeter	Area Range	Valsalva Diameter	Sinutubular Junction Length	Aorta Diameter*
23	18 mm – 20 mm	56.5 mm – 62.8 mm	254.5-314.2 mm	≥ 25 mm	≥ 15mm	≤ 34 mm
26	20 mm – 23 mm	62.8 mm – 72.3 mm	314.2-415.5 mm	≥ 27 mm	≥ 15mm	≤ 40 mm
29	23 mm – 27 mm	72.3 mm – 84.8 mm	415.5-572.6 mm	≥ 29 mm	≥ 15mm	≤ 43 mm
31	26 mm – 29 mm	81.6 mm – 91.1 mm	530.9-660.5 mm	≥ 29 mm	≥ 15mm	≤ 43 mm

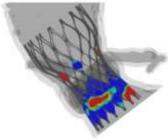

^{*}Ascending Aorta measurements are taken at 30 mm from the aortic annulus for the 23 mm device and at 40 mm from the aortic annulus for the 26, 29, and 31 mm devices.

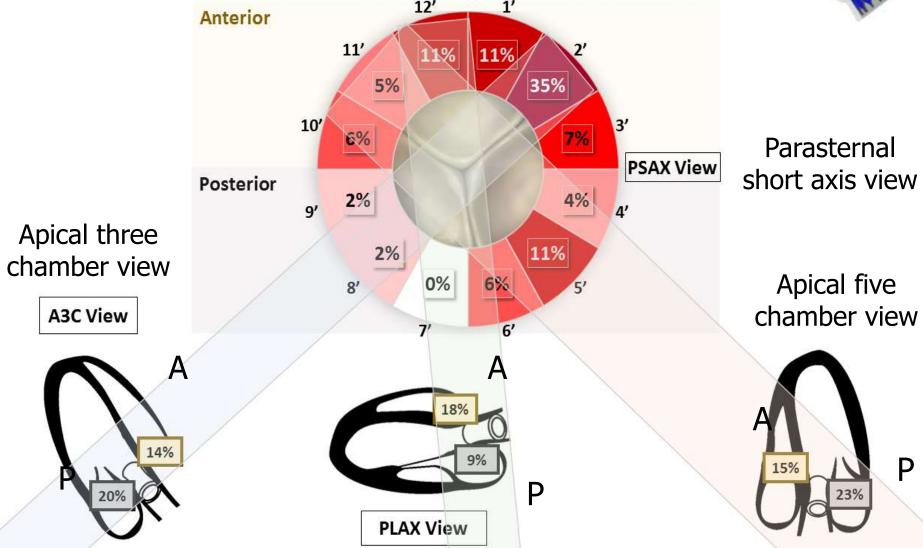



Ascending Aorta

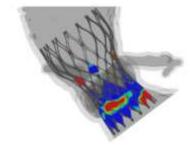
Sizing Strategy and PVL Prevention

- Accurate Sizing: CT
- Upsizing or downsizing
- Intraoperative TEE Verification & Monitoring
- No predilation
- One inflation strategy
- Know the imperfect anatomy

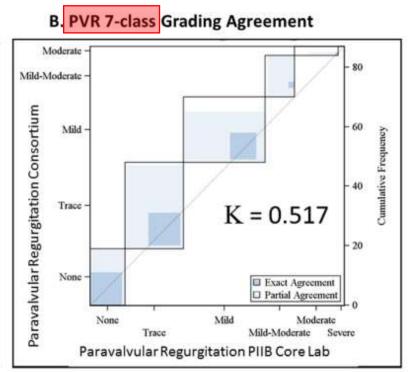

Evolution of TAVR in 2017


Less and less invasive TAVR: majority of cases performed under conscious sedation (≥70%) with transfemoral approach (≥90%)

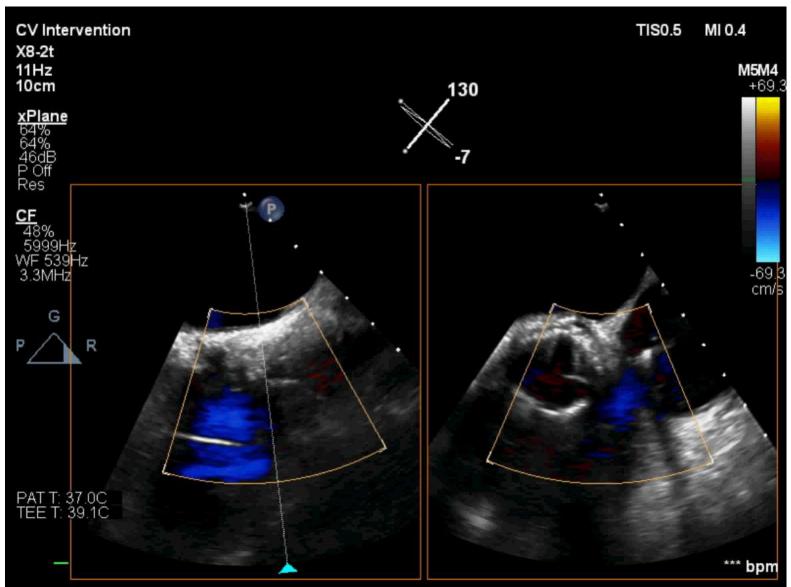
- Consequences of this evolution:
 - Less and less comprehensive imaging:
 - > No TEE
 - Ventriculography only
 - Suboptimal TTE
 - Risk of underdetection of PVR at the time of procedure



Low sensitivity to detect jets in certain locations (posterior jets)

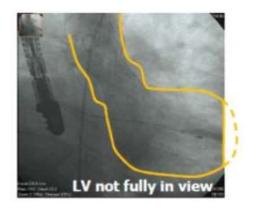

Assessment of Paravalvular Aortic Regurgitation after Transcatheter Aortic Valve Replacement: Intra-Core Laboratory Variability

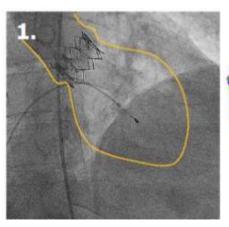
Rebecca T. Hahn, MD, FACC, Philippe Pibarot, DVM, PhD, FACC, Neil J. Weissman, MD, FACC, Leonardo Rodriguez, MD, FACC, and Wael A. Jaber, MD, FACC, New York, New York; Québec City, Québec, Canada; Washington, District of Columbia; and Cleveland, Ohio

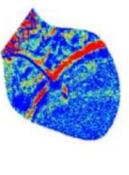

A. PVR 4-class Grading Agreement Moderate Paravalvular Regurgitation Consortium Mild K = 0.481Trace 20 Exact Agreement □ Partial Agreement None / Trace Moderate Paravalvular Regurgitation PIIB Core Lab

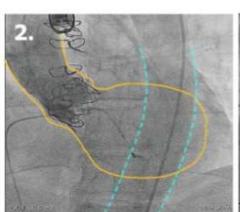
None, Trace / Mild / Moderate/ Severe

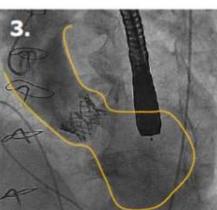
None / Trace / Mild / Mild to Moderate / Moderate / Moderate / Severe / Severe


Hahn et al. J Am Soc Echocardiogr 2015;28(4):415-22

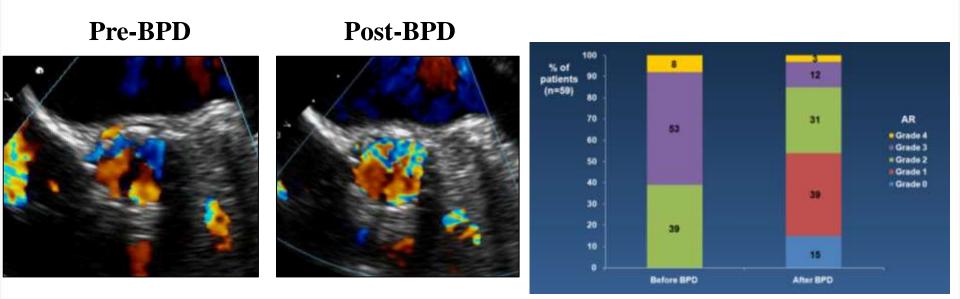



The interrogation of the entire LV is not always feasible, because of...

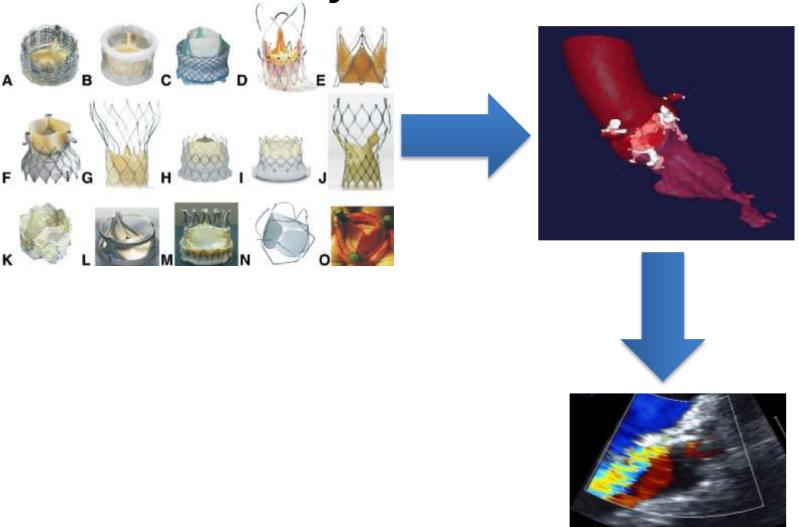

Apex sometimes not visualized



- Video-densitometry can be influenced by a number of back ground structures, such as...
 - 1. Diaphragm, lung field and gastric or bowel gas
 - 2. Contrast-filled descending aorta
 - 3. Dense objects such as TOE probes in the ROI



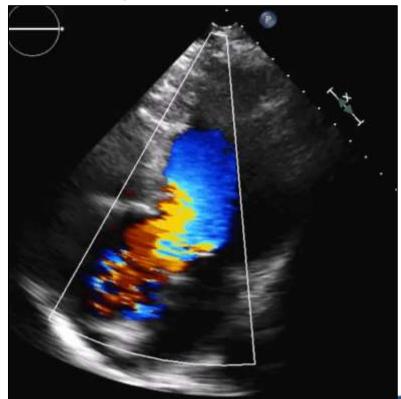
Impact of Balloon Post-dilation on PVR And Outcomes



BPD: 2.5-fold increase in the risk of early cererovascular events

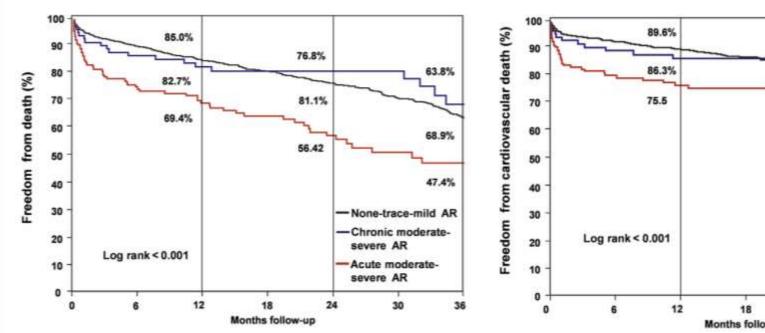
New Generations of THV

Hostile Anatomy



The impact of PVR is not equivalent in all patients

A <u>mild</u> PVR may be harmful in patients with pure AS



A <u>moderate</u> PVR may be well tolerated by patients with pre-existent AR

Effect of Acuteness of AR on Mortality After TAVR

Multicenter Study (1735 Patients)

Jerez-Valero et al. J Am Coll Cardiol Intv 2014;7:1022–32

Sizing Strategy and PVL Prevention

- Accurate Sizing: CT
- Upsizing or downsizing
- Intraoperative TEE Verification & Monitoring
- No predilation
- One inflation strategy
- Know the imperfect anatomy
- Precise and Reproducible

